Download End-to-end equalization with convolutional neural networks
This work aims to implement a novel deep learning architecture to perform audio processing in the context of matched equalization. Most existing methods for automatic and matched equalization show effective performance and their goal is to find a respective transfer function given a frequency response. Nevertheless, these procedures require a prior knowledge of the type of filters to be modeled. In addition, fixed filter bank architectures are required in automatic mixing contexts. Based on end-to-end convolutional neural networks, we introduce a general purpose architecture for equalization matching. Thus, by using an end-toend learning approach, the model approximates the equalization target as a content-based transformation without directly finding the transfer function. The network learns how to process the audio directly in order to match the equalized target audio. We train the network through unsupervised and supervised learning procedures. We analyze what the model is actually learning and how the given task is accomplished. We show the model performing matched equalization for shelving, peaking, lowpass and highpass IIR and FIR equalizers.
Download A general-purpose deep learning approach to model time-varying audio effects
Audio processors whose parameters are modified periodically over time are often referred as time-varying or modulation based audio effects. Most existing methods for modeling these type of effect units are often optimized to a very specific circuit and cannot be efficiently generalized to other time-varying effects. Based on convolutional and recurrent neural networks, we propose a deep learning architecture for generic black-box modeling of audio processors with long-term memory. We explore the capabilities of deep neural networks to learn such long temporal dependencies and we show the network modeling various linear and nonlinear, time-varying and time-invariant audio effects. In order to measure the performance of the model, we propose an objective metric based on the psychoacoustics of modulation frequency perception. We also analyze what the model is actually learning and how the given task is accomplished.